VoIP Troubleshooting and Monitoring

Terry Slattery
Principal Consultant
CCIE #1026
Chesapeake Netcraftsmen
netcraftsmen.net

Troubleshooting

• Provide examples of common problems
• Identify sources of problems and their symptoms
• Remediation
• Techniques you can use in your network
• Monitoring requirements
• What to monitor
• Useful metrics
The Network is the Foundation for VoIP

- VoIP depends upon the network
 1. Network hardware and links
 2. Network protocols (routing & switching)
 3. Transport protocols (TCP/UDP)
 4. VoIP protocols and operation

- Other features
 - QoS
 - Redundancy

- Use VoIP operational model to aid troubleshooting and monitoring

How VoIP Works

- Connectivity and Registration
 - Power requested by continuous Fast Link Pulse (FLP)
 - DHCP request & response (UDP)
 - Get config from TFTP server (UDP)
 - Register with call controller (TCP)
How VoIP Works (cont)

- Call setup and operation
 1. Off-hook, Dialtone, Phone 1
 2. Collect digits and call setup, Phone 1
 3. Ringback tone, Phone 1
 4. Call setup, Phone 2
 5. Ring Phone, 2
 6. Off-hook, Phone 2
 7. Connect RTP stream

* Basic steps; a lot more happens than in this high-level description

Troubleshooting Diagnostic Aids
Connectivity – VLAN

- **Voice VLAN mis-configured**
 - Phone comes up in the wrong VLAN
 - Static configuration on phone (eBay purchase)
 - Switch misconfigured

- **No Voice VLAN**
 - Phone connected to data port
 - Switch misconfigured (include voice vlan)

    ```
    interface FastEthernet0/9
    switchport access vlan 100
    switchport mode access
    switchport voice vlan 411
    ```

Connectivity – DHCP

- **IP address assignment, default gateway, addl boot info** - Cisco: option 150, Avaya: option 176

- **Local vs Central DHCP server**
 - Short lease vs Long lease
 - Administrative overhead
 - Tracking address utilization
Connectivity – DHCP Location Tradeoffs

- **Central**
 - Multi-day address lease – longer than typical downtime
 - Reduces network equipment configuration
 - Good if many small branches exist
 - Handling long connectivity downtime due to disaster

- **Local**
 - Short address lease
 - Manage DHCP config at each site
 - More appropriate at larger remote sites.
 - Good if downtime is more extensive
 - Very remote offices with poor connection reliability

Connectivity - TFTP

- Download the phone config and OS
- Connectivity between phone and TFTP server
 - Co-located with central DHCP server is good
 - TFTP uses UDP – Firewall or ACL configuration
- TFTP timeout on long delay and lossy paths
Connectivity – TFTP

• TFTP server failure
 – Address in DHCP option 150 for Cisco; 176 for Avaya
 – Redundant server specification is good

• Bad TFTP file
 – Doesn't exist – often wrong phone MAC address
 – Bad format or contains typos

• Long system boot times, due to power outage
 – Example: 20 minutes to get all phones working
 – Network infrastructure boot time
 – DHCP/TFTP/Call servers booting, then overloaded
 – Download congestion!
 – Use load balancing

Registration

• Can’t connect to the Call Server
 – Routing problem between phone and call server
 – Incorrect firewall, or ACL configuration

• Test with ping and traceroute from call server

• Which phones are affected?

• New site?
 - No route to call controller
 - Firewall, ACL, or routing problem
 - No route to phones
Registration

• Can’t connect to the Call Server
 – Phone not configured in Call Server
 – MAC address wrong in Call Server
 – Default TFTP config file has wrong Call Controller address

Wrong call controller address

Phone MAC address wrong or not configured

Registration

• Can’t connect to the Call Server
 – Call server capacity (e.g., after power outages)
 – Call server is down
 • Use redundant call servers on different subnets

Redundant servers but the subnet is unreachable

Overloaded call server
Call Setup

• Incorrect destination call routing
 – Dial plan problems
 • Overlapping dial spaces

4-digit dialing:
736-8[0-4]XX
355-8[5-9]XX
Then add:
736-85XX

• Incorrect dial search spaces

7-digit dialing:
939XXXX (Internal)
939XXXX (Local)
9.939XXXX (Local)
9.393@ (Local or LD)

– Troubleshoot with DNA (Dialed Number Analyzer)

Call Setup

• Phones get calls for other locations
 – Numbers and hunt groups tied to phone, not line
 – Phone moved but call server not updated

• Spend time on a good dial plan!
 – 10-digit, multi-tenant plan
 – Map dial spaces onto this plan
 – Can still do 4-digit (or N-digit) dialing
 – Allows for growth, merger, acquisition
 – Much, much less expensive to maintain
 – Note: include planning to avoid toll fraud
Call Setup

- TCP is used between call server and endpoints
 - Routing problem between call controller & endpoints
 - Typically won't get dial tone or registration
 - Ping, traceroute, ACL checks, etc (sound familiar?)
 - Endpoints include PSTN gateways and DSPs*

Call Setup

- DSP required to match codecs or for conf calls
- Troubleshooting
 - CUCM log: “no resources”
 - Monitor DSP pool utilization
 - Cat 6500: show port voice active
 - Command syntax and limits depend on hardware
- Solution: buy more hardware

*Digital Signal Processor
Call Operation - No-Way Audio

- Audio RTP data sent in UDP datagrams
- Endpoints don't have connectivity
 - Routing problem
 - Firewall or ACL blocking a path
 - Cisco Skinny payload carries IP addr (NAT must know to change the embedded address)
- Use ping & traceroute to check reachability

Call Operation - One-Way Audio

- Check basic connectivity
 - Firewall or ACL blocking one path
 - Routing problem
- Two-way, then one-way
 - Change in routing or configuration
 - DSP crash (when transcoding or conference call)
 - Link congestion and no QoS or bad QoS
- Troubleshooting
 - What changed? (routing & configuration)
 - Who was affected?
 - Log analysis
Call Operation - Delay, Jitter, Packet Loss

• Causes:
 – Inconsistent or no QoS
 – Duplex mismatch or bad link
 – Routing problems (loss) or multipath (jitter)
 – Oversubscribed links (congestion & loss)

• Know when it's happening
 – Be able to detect the cause of each problem
 – Monitoring depends on vendor
 • RTCP stream (Avaya, Nortel)
 • Call stats on call server (Cisco)
 • ITU specs: 150ms delay, 30ms jitter, 1% loss

G.729 Good
60ms Jitter
10% packet loss

Call Operation - Delay

• ITU Spec: 150ms one-way delay

• Reduces interaction of a call
 – Wait for voice to travel to the other end of the call
 – Worst case is like a push-to-talk radio (Nextel?)
 – Roughly 10ms per 1000 miles (~30ms across the US)

• Causes:
 – Sub-optimum route path selection
 • New York to Atlanta via San Francisco
 – Long delay path, e.g., satellite circuit
 (250ms one-way)
Call Operation - Jitter

- Phones buffer packets to handle minor jitter
 - Packets with large jitter arrive too late and are dropped
 - Route flapping
 - Multipath load balancing

ITU Spec: 30ms jitter
- Big packets delay voice on low speed links
- Use Link Fragmentation and Interleaving (LFI)
 - Choose fragment size for delays of about 15 ms

<table>
<thead>
<tr>
<th>Link Speed</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>64Kbps</td>
<td>8 ms</td>
<td>16 ms</td>
<td>32 ms</td>
<td>64 ms</td>
<td>128 ms</td>
<td>187 ms</td>
</tr>
<tr>
<td>128Kbps</td>
<td>4 ms</td>
<td>8 ms</td>
<td>16 ms</td>
<td>32 ms</td>
<td>64 ms</td>
<td>93 ms</td>
</tr>
<tr>
<td>256Kbps</td>
<td>2 ms</td>
<td>4 ms</td>
<td>8 ms</td>
<td>16 ms</td>
<td>32 ms</td>
<td>46 ms</td>
</tr>
<tr>
<td>512Kbps</td>
<td>1 ms</td>
<td>2 ms</td>
<td>4 ms</td>
<td>8 ms</td>
<td>16 ms</td>
<td>23 ms</td>
</tr>
<tr>
<td>768Kbps</td>
<td>0.6 ms</td>
<td>1.2 ms</td>
<td>2.5 ms</td>
<td>5.1 ms</td>
<td>10.2 ms</td>
<td>15 ms</td>
</tr>
</tbody>
</table>

Before

<table>
<thead>
<tr>
<th>60-Bytes</th>
<th>1500-Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice</td>
<td>Data</td>
</tr>
</tbody>
</table>

After

<table>
<thead>
<tr>
<th>128-Bytes</th>
<th>60-Bytes</th>
<th>128-Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Voice</td>
<td>Data</td>
</tr>
</tbody>
</table>
Call Operation - Jitter

- Inconsistent or no QoS implemented
 - Series of big packets delay voice
 - Only occurs when a link is oversubscribed
 - Priority queue moves voice to the front of the queue
 - Caution: Priority queue can starve lower priority queues; use policing to limit its effect
 - Configuration details vary among products

G.711
Before
- 218-Bytes Voice 40 pkts @ 1500-Bytes 6ms of Data 19ms 218-Bytes Voice
- 5ms jitter

After ...
- 218-Bytes Voice 33 pkts 5ms of Data 19ms 218-Bytes Voice
- 5ms jitter
- 33 pkts 5ms of Data
- 7 pkts 19ms 218-Bytes Voice
- 1ms of Data

Call Operation – Packet Loss

- ITU Spec: 1% packet loss (codecs handle 5%)
- Incorrect or no QoS configuration
 - Oversubscribed priority queue with policing
 - Designed for 4 concurrent calls, 20ms rate
 - G.729 on Frame Relay: 28.14 kbps *
 - G.711 on Ethernet: 91.56 kbps *
 - Facility expands and 8 concurrent calls occur
 - Policing on priority queue drops excess traffic
 - Monitor QoS queue drops
 - VoIP traffic not properly classified
 - Dropped when congestion occurs
 - * google: “cisco codec bandwidth” for calculators
Call Operation – Packet Loss

• Duplex mismatch (very common)
 – Fixed configuration on one end of link
 – The fixed configuration end doesn't negotiate
 – Look for errors: FCS, Runts, Late Collisions
 – Use Auto-negotiate for phones

    ```
    interface FastEthernet 0/1
    duplex auto
    ```

• Bad cabling
 – Bad crimp
 – Cat 3 cable
 – Pinched cable

• Use 'duplex auto'

Call Operation – Echo

• Symptom: Excessive talker echo (the most common)
• Acoustic echo - speaker output feed-back
 – Speaker phone or cheap earphone on remote end
 – Increase echo processing timer
• Electrical echo
 – Connection to analog via two-wire to four-wire hybrid
 – Reduce output gain & increase input attenuation in small steps (10% - 20%)
 – DSP bugs
• Delays inherent in IP telephony accentuate echo
Music on Hold

- Symptom: Music on Hold not on some phones
 - No MoH resource defined for the phones
 - MoH resources exhausted, typically when unicast playback is selected
 - Multicast routing not consistently configured when multicast MoH is used

Survivable Remote Site Telephony (SRST)

- Symptom: Phones can’t register with SRST Router
 - SRST not configured on phone & router
 - More phones or directory numbers than SRST router supports
 - Short DHCP lease (increase to 8 days)
Summary: Troubleshooting

- Configuration mistakes are the major cause of problems
- Collect data; subdivide the problem
- Test hypothesis and repeat
- Use the Network and Operational Models to subdivide the problem and aid troubleshooting

<table>
<thead>
<tr>
<th>Call Operation</th>
<th>Misc Operation and Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Setup</td>
<td></td>
</tr>
<tr>
<td>Connectivity and Registration</td>
<td></td>
</tr>
</tbody>
</table>

Applications (VoIP)
Communication Protocols (TCP/UDP/IP)
Routing & Switching Protocols (OSPF, STP)
Network Hardware & Links (Routers & Switches)

Manual Monitoring Doesn't Scale

- Above 20-50 devices is too big
- Check system interdependencies
 - Root bridge depends on the switches in the STP domain
 - Duplex mismatch depends on connected device
 - Routing protocol consistency
 - VoIP call quality
 - QoS configurations
Monitoring Requirements

• Real-time
 – Events; Performance; Error detection

• Trending
 – Historical utilization and operational data

• Configuration management
 – Saving configs and checking against policies

• Latent problem detection
 – Combining data to find potential problems

Metrics

• Measurable
 – Link, CPU, memory utilization
 – QoS queue drops
 – Interface errors

• Actionable
 – Must be usable for identifying and fixing problems

• Update frequency
 – Nyquist sampling theorem: sample at 2X the freq of the data
 – Dependent on the use
 • Trending and historical
 • Real-time & diagnostic
Realtime – Events

• Syslog & SNMP traps
 – Sent asynchronously by network gear
 – High volume (particularly firewalls)
 – UDP-based (unreliable delivery)
 – Informational through critical severity

• Log everything
 – Keep for historical reference

• Filters for different recipients
 – Network operations team
 – Unified communications team
 – Security team

• Sync device clocks with NTP
 – Correlate timestamps from multiple devices

Realtime – Event Processing

• Handling the volume
 – Filter out unimportant events
 – Tune filters over time

• Daily summary report
 Summary of GNS Cisco syslog Messages on Wed Jan 17 23:59:00 EST 2007
 Cisco Messages:
 437 DUAL-5-NBRCHANGE
 353 LINEPROTO-5-UPDOWN
 114 CRYPTO-6-IKMP_MODE_FAILURE
 ...
 Messages sorted by frequency and source device:
 346 test1.com DUAL-5-NBRCHANGE
 114 test2.com CRYPTO-6-IKMP_MODE_FAILURE
 84 test3.com LINEPROTO-5-UPDOWN Tunnel119
 67 test4.com DUAL-5-NBRCHANGE
Realtime – Cisco Events

- Cisco: “System Error Messages for Cisco Unified Communications Manager”
 - CCM_CALLMANAGER-CALLMANAGER-3-CallManagerFailure
 - CCM_CALLMANAGER-CALLMANAGER-3-SDLLinkOOS: Cluster communications link failure
 - CCM_CALLMANAGER-CALLMANAGER-4-MediaResourceListExhausted: media resource type not found
 - CCM_CALLMANAGER-CALLMANAGER-3-TspError: phone registration problem
 - LINK-3-UPDOWN: backbone and important links
 - CDP-4-DUPLEX-MISMATCH: high utilization links
 - LINK-4-ERROR: excessive link errors
 - SYS-5-RESTART: device restarted
 - DUAL-3-SIA: EIGRP routing protocol problem
 - SYS-{1345}-SYS-LCPERR{1345}: Cat 6500 internal error

Realtime – VoIP Performance

- Delay, Jitter, Loss stat collection
 - Cisco: Call Detail Record (CDR) & Call Maintenance Record (CMR) collection
 - Avaya: RTCP stream directed to collector
- ITU specs:
 - Delay: 150ms one-way
 - Jitter: 30ms
 - Loss: 1%
- Determine your thresholds
 - Military often uses much higher values
 - 1% packet loss is terrible for data
 - NY to SF is 30ms one-way
Realtime – Triggers

• Call completion failure codes
 – search cisco.com “Call Termination Cause Codes”

• Environmental failures other than events
 – High power supply utilization
 – Fan failure (should be an event, but uses UDP)
 – Temperature
 – UPS battery reserve, AC supply status, etc
 – Change in STP root bridge
 – Redundant router (HSRP/VRRP) change

Trending

• Correlate with configurations to find latent problems

• Trends in call quality (CDR/CMR trending)

• UPS battery life and planning replacements

• CPU & Memory utilization trends, particularly in software-based routers

• QoS queue drops
Trending Example

- **Memory leak – router crash every twelve days**

 Drill-down to 10.17.8.102 stats, monthly view

 The following routers and switches experienced at least a 2% decrease in free memory during the day of 2003-12-23:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Device Name</th>
<th>Free Memory Start</th>
<th>Free Memory End</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.17.8.102</td>
<td>32-tech-3244</td>
<td>16MB</td>
<td>12MB</td>
</tr>
</tbody>
</table>

Trending – VoIP Resource Utilization

- **DSP pool utilization (CISCO-DSP-MGMT-MIB)**
 - `cdspCardResourceUtilization`
 - Indicates the percentage of current DSP resource utilization of the card
 - `cdspCardLastHiWaterUtilization`
 - Indicates the last high water mark of DSP resource utilization
 - Calculate total utilization across all cards

- **Trunk channel utilization & CUCM monitoring**
 - `CISCO-CCM-MIB-V1SMI: ccmGatewayTrunkTable`
 - Calculate utilization from total and in-use counts

- **Metric**
 - 70% for growing organization; 90% for no growth
Configuration Management

• Greatest impact on network stability and faults
 – Majority of network problems are due to configuration mistakes
 – More than 40%; amount depends on the analyst
 – Impossible to get to five-nines without it

• What to track
 – Who made the change
 – What changed
 – When was it changed
 – Use a AAA server (Radius or TACACS+)

• Critical in VoIP networks

Configuration Management

• Basic requirements
 – Configuration archive
 – Check Running vs Saved configurations
 – Log configuration changes
 – Tools to view changes

```
Running Config @ 2004-01-02 09:54:30
```

```
Saved Config @ 2003-12-01 04:03:23
```

```
---
1. version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption
hostname prc-srvn-2
aaa new-model
aaa authentication login default local
enable password 5$37311d6555c7a1e99

username greg password 7$1f8728648209f

to subnet-zero
---
```

```
1. version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption
hostname prc-srvn-2
aaa new-model
aaa authentication login default local
enable password 7$1f008aef0c542e9a

username fred password 7$1146016d716c90
username daily password 7$202605743f839a
username john password 7$ec4a110704e38
to subnet-zero
```
Configuration Management

• Example: The Site That Lost Its VoIP
 – Major VoIP deployment
 – No automated tools in place
 – All routers and switched updated at the site
 – Two weeks later: power outage at the site
 – VoIP is down
 – Analysis: Configurations were not saved to NVRAM

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Device Name</th>
<th>Device Type</th>
<th>Saved Differences</th>
<th>Running vs. Saved Differences</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.23.24.1</td>
<td>NTP-42</td>
<td>Server</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>172.23.24.12</td>
<td>NTP-42</td>
<td>Server</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>172.23.23.15</td>
<td>Tel1</td>
<td>Router</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>172.23.24.13</td>
<td>Tel1</td>
<td>Router</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Policy

• Policy definition process
 1. Policy defined
 2. Template created
 3. Per-device modifications made to template
 4. Install final configuration in the device
• Policy is infrequently reviewed afterwards
 – Configs divert from policy as changes accumulate
 – Manual method are tedious and error-prone
Validating Configuration Policy

• Not just regulatory – check best practices
• Mechanism
 – Compare templates with device configs
 – Identify differences
 – Create an alert
• Value
 – Validate existing policies
 – Identify devices that don’t match a new policy

Fixing Configuration Policy Exceptions

• Remediation
 – Some policy exceptions can be automatically fixed
 • Duplex mismatch
 • Bridge priority
 • Router ARP timer > switch CAM timer
 – Service impacting changes need manual application

• Without automated policy validation, configs become inconsistent

• QoS policies
 – Trusting QoS in the right places?
 – Correct QoS marking policies in place?
Latent Problems – No Redundancy

• HSRP & VRRP
 – No redundant router
 – First failure was not noticed

Latent Problems – Wrong Root Bridge

• Root Bridge
 – Must determine switches in spanning tree domain
 – Check bridge priority on all switches in the domain
Summary

- The network is the foundation for VoIP
- VoIP is a complex system – many interdependencies
- Monitor key parameters with automated tools
- Use the Network and Operational Models to subdivide the problem and aid troubleshooting

<table>
<thead>
<tr>
<th>Call Operation</th>
<th>Misc Operation and Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity and Registration</td>
<td>Call Setup</td>
</tr>
</tbody>
</table>

Applications (VoIP)
- Communication Protocols (TCP/UDP/IP)
- Routing & Switching Protocols (OSPF, STP)
- Network Hardware & Links (Routers & Switches)